首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6637篇
  免费   1768篇
  国内免费   1456篇
测绘学   154篇
大气科学   202篇
地球物理   2112篇
地质学   5260篇
海洋学   900篇
天文学   12篇
综合类   454篇
自然地理   767篇
  2024年   11篇
  2023年   73篇
  2022年   167篇
  2021年   243篇
  2020年   265篇
  2019年   261篇
  2018年   268篇
  2017年   291篇
  2016年   328篇
  2015年   304篇
  2014年   395篇
  2013年   421篇
  2012年   391篇
  2011年   395篇
  2010年   356篇
  2009年   444篇
  2008年   466篇
  2007年   475篇
  2006年   431篇
  2005年   391篇
  2004年   402篇
  2003年   348篇
  2002年   325篇
  2001年   271篇
  2000年   276篇
  1999年   245篇
  1998年   234篇
  1997年   207篇
  1996年   201篇
  1995年   200篇
  1994年   159篇
  1993年   145篇
  1992年   107篇
  1991年   86篇
  1990年   70篇
  1989年   71篇
  1988年   44篇
  1987年   35篇
  1986年   19篇
  1985年   9篇
  1984年   11篇
  1983年   4篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1954年   7篇
排序方式: 共有9861条查询结果,搜索用时 15 毫秒
41.
Longmenshan fault zone is a famous orogenic belt and seismic zone in the southeastern Tibetan plateau of China. The Wenchuan MS8.0 earthquake on May 12, 2008 and the Ya'an MS7.0 earthquake on April 20, 2013 occurred in the central-southern part of Longmenshan fault zone. Because of its complex geological structures, frequent earthquakes and special geographical locations, it has attracted the attention of many scholars around the world. Satellite gravity field has advantages in studying gravity field and gravity anomaly changes before and after earthquake. It covers wide range, can be updated regularly, without difficulty in terms of geographical restrictions, and is not affected by environmental factors such as weather, terrain and traffic. Therefore, the use of high-precision Earth satellite gravity field data inversion and interpretation of seismic phenomena has become a hot topic in earth science research. In order to understand satellite gravity field characteristics of the Longmenshan earthquake zone in the southeastern Tibetan plateau and its seismogenic mechanism of earthquake disasters, the satellite gravity data was used to present the terrain information of the study area. Then, by solving the regional gravity anomaly of the Moho surface, the crustal thickness of the study area was inverted, and the GPS velocity field data was used to detect the crustal deformation rate and direction of the study area. Combining the tectonic setting of the Longmenshan fault zone and the existing deep seismic sounding results of the previous researchers, the dynamic characteristics of the gravity time-varying field after the earthquake in the Longmenshan earthquake zone was analyzed and the mechanism of the earthquake was explored. The results show that the eastward flow of deep materials in the eastern Tibetan plateau is strongly blocked at the Longmenshan fault zone. The continuous collision and extrusion process result in a "deep drop zone" in the Moho surface, and the long-term stress effect is conducive to the formation of thrust-nappe and strike-slip structures. The Longmenshan earthquake zone was in the large-scale gradient zone of gravity change before the earthquake, the deep plastic fluid material transport velocity differed greatly, the fluid pressure was enhanced, and the rock mechanical strength in the seismic source region was weakened, which contributed to the intrusion of crustal fluid and the upwelling of the asthenosphere. As a result, the continuous accumulation of material and energy eventually led to continuous stress imbalance in the deep part and shear rupture of the deep weak structure, causing the occurrence of the thrust-nappe and strike-slip earthquake.  相似文献   
42.
There have been significant recent advances in understanding the ecohydrology of deep soil. However, the links between root development and water usage in the deep critical zone remains poorly understood. To clarify the interaction between water use and root development in deep soil, we investigated soil water and root profiles beyond maximum rooting depth in five apple orchards planted on farmland with stand ages of 8, 11, 15, 18, and 22 years in a subhumid region on the Chinese Loess Plateau. Apple trees rooted progressively deeper for water with increasing stand age and reached 23.2 ± 0.8 m for the 22‐year‐old trees. Soil water deficit in deep soil increased with tree age and was 1,530 ± 43 mm for a stand age of 22 years. Measured root deepening rate was far great than the reported pore water velocity, which demonstrated that trees are mining resident old water. The deficits are not replenished during the life‐span of the orchard, showing a one‐way mining of the critical zone water. The one‐way root water mining may have changed the fine root profile from an exponential pattern in the 8‐year‐old orchard to a relative uniform distribution in older orchards. Our findings enhance our understanding of water‐root interaction in deep soil and reveal the unintended consequences of critical zone dewatering during the lifespan of apple trees.  相似文献   
43.
Detailed knowledge of the flood period of Arctic rivers remains one of the few factors impeding rigorous prediction of the effect of climate change on carbon and related element fluxes from the land to the Arctic Ocean. In order to test the temporal and spatial variability of element concentration in the Ob River (western Siberia) water during flood period and to quantify the contribution of spring flood period to the annual element export, we sampled the main channel year round in 2014–2017 for dissolved C, major, and trace element concentrations. We revealed high stability (approximately ≤10% relative variation) of dissolved C, major, and trace element concentrations in the Ob River during spring flood period over a 1‐km section of the river channel and over 3 days continuous monitoring (3‐hr frequency). We identified two groups of elements with contrasting relationship to discharge: (a) DIC and soluble elements (Cl, SO4, Li, B, Na, Mg, Ca, P, V, Cr, Mn, As, Rb, Sr, Mo, Ba, W, and U) negatively correlated (p < 0.05) with discharge and exhibited minimal concentrations during spring flood and autumn high flow and (b) DOC and particle‐reactive elements (Al, Fe, Ti, Y, Zr, Nb, Cs, REEs, Hf, Tl, Pb, and Th), some nutrients (K), and metalloids (Ge, Sb, and Te), positively correlated (p < 0.05) with discharge and showed the highest concentrations during spring flood. We attribute the decreased concentration of soluble elements with discharge to dilution by groundwater feeding and increased concentration of DOC and particle‐reactive metals with discharge to leaching from surface soil, plant litter, and suspended particles. Overall, the present study provides first‐order assessment of fluxes of major and trace elements in the middle course of the Ob River, reveals their high temporal and spatial stability, and characterizes the mechanism of river water chemical composition acquisition.  相似文献   
44.
The root‐zone moisture replenishment mechanisms are key unknowns required to understand soil hydrological processes and water sources used by plants. Temporal patterns of root‐zone moisture replenishment reflect wetting events that contribute to plant growth and survival and to catchment water yield. In this study, stable oxygen and hydrogen isotopes of twigs and throughfall were continuously monitored to characterize the seasonal variations of the root‐zone moisture replenishment in a native vegetated catchment under Mediterranean climate in South Australia. The two studied hillslopes (the north‐facing slope [NFS] and the south‐facing slope [SFS]) had different environmental conditions with opposite aspects. The twig and throughfall samples were collected every ~20 days over 1 year on both hillslopes. The root‐zone moisture replenishment, defined as percentage of newly replenished root‐zone moisture as a complement to antecedent moisture for plant use, calculated by an isotope balance model, was about zero (±25% for the NFS and ± 15% for the SFS) at the end of the wet season (October), increased to almost 100% (±26% for the NFS and ± 29% for the SFS) after the dry season (April and May), then decreased close to zero (±24% for the NFS and ± 28% for the SFS) in the middle of the following wet season (August). This seasonal pattern of root‐zone moisture replenishment suggests that the very first rainfall events of the wet season were significant for soil moisture replenishment and supported the plants over wet and subsequent dry seasons, and that NFS completed replenishment over a longer time than SFS in the wet season and depleted the root zone moisture quicker in the dry season. The stable oxygen isotope composition of the intraevent samples and twigs further confirms that rain water in the late wet season contributed little to root‐zone moisture. This study highlights the significant role of the very first rain events in the early wet season for ecosystem and provides insights to understanding ecohydrological separation, catchment water yield, and vegetation response to climate changes.  相似文献   
45.
杨微 《地震工程学报》2019,41(6):1407-1418
断裂带首波是沿着存在物性差异界面传播的一种地震折射波,在传播过程中携带了断裂带的重要信息,对分析和研究断裂带以及附近区域的精细结构提供了一种新的分析方法。本文主要阐述断裂带首波的产生原理、波形特征、识别及分析方法等,介绍目前国际上识别及利用断裂带首波开展断裂带特征方面的研究现状,并针对地震危险区域存在物性差异的断裂带,提出可结合密集台阵观测技术,利用断裂带首波进行断裂带精细结构探测及其变化监测研究,提高潜在孕震环境及发生机理的认识水平。  相似文献   
46.
陈佳  高琼  王军  邓嘉美 《地震》2019,39(1):72-80
利用程海断裂带附近27个数字地震台站远震波形资料, 提取每一个台站的接收函数, 计算出各台站莫霍面深度同时利用时间域线性反演方法, 获得了各个台站下方的横波速度。 结果显示: 程海断裂带莫霍面深度从南部42 km增至北部的54 km, 南部和北部莫霍面深度有明显的不同。 从程海断裂带下方不同深度S波速度剖面可以看出, 宾川及其北东部地区中下地壳存在明显的低速层, 此低速层可能与还没有固结的热物质有关。 而永胜南部地区, 地壳中S波速度垂直变化剧烈, 低速异常高速异常交替丛生, 这可能是此区地震频发的主要原因。 同时, 本文对宽频带地震仪和短周期地震仪得到的接收函数进行了初步的对比分析。  相似文献   
47.
为研究汤东断裂带土壤气体地球化学特征及其所反映的构造地球化学背景, 采用野外监测的方法分析了张河村与邢李庄村两条测线的土壤H2、 Rn分布特征。 结果表明, 张河村H2浓度、 Rn活度浓度的分布范围分别为0.24×10-6~174.7×10-6、 13.3~69.8 kBq·m-3, 背景值分别为14.26×10-6, 24.8 kBq·m-3。 邢李庄测线H2浓度、 Rn活度浓度的分布范围11.8×10-6~67.06×10-6、 43.6~72.6 kBq·m-3, 背景值分别为37.13×10-6、 72.6 kBq·m-3。 张河村测线在90~105 m处, H2、 Rn出现强烈高值异常, 而120~150 m处出现高值异常。 异常值位于断裂带附近, H2、 Rn气体测值对断裂位置具有良好的指示作用。 气体异常主要受汤东活动断裂构造控制, 汤东断裂下方的深大断裂和汤阴地堑中下地壳的低速体对深部气体释放有重要作用。  相似文献   
48.
收集河北地震台网记录的唐山震区2012-2016年ML ≥ 1.0地震,选取震源深度5-10 km、波形信噪比较高的波形数据,拾取直达P波、S波震相到时,利用和达法计算平均波速比,并分析研究区平均波速比水平分布特征与时变特征,结果表明:唐山震区上地壳平均波速比约为1.71,且水平分布呈区域化特征,反映了研究区复杂的地壳结构。研究区内3次ML ≥ 4.0地震前,波速比曲线均呈较显著的下降-低值-回升形态,表明该区平均波速比变化可能具有一定地球物理异常特征。  相似文献   
49.
选取2009—2014年华北—东北地区发生的12次中等地震,对该区8个地磁台站记录的地磁Z分量日变幅进行小波分析及合成计算,与日本海沟同期发生的12次M≥6.5强震进行关联性分析,发现日本强震对中国华北—东北地区中等地震活动具有连带作用,表现在:(1)日本强震发生前后,华北或东北地区均有M 4—5地震出现,频次一般为1—3,间隔几天至5个月左右;(2) 2011年3月10日日本M 9.1地震后,华北、东北地区中等地震震级有所升高,其中东北地区由M 4升至M 5,距日本最近的中俄交界甚至出现M 6.1地震,华北地区唐山老震区出现1次M 4.8地震,震级接近5;(3)每次日本强震出现后几天至2个月内,8个地磁台地磁Z分量小波细节6阶合成曲线值均出现2—6个月高值异常,但幅度大小与强震震级无明显规律可循,而华北或东北地区中等地震一般在异常高值出现前后低值附近发生。  相似文献   
50.
The evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号